PCI Bus Econo Series, 1-4 axes

DMC-18x2 Series

Product Description

The DMC-18×2 Series are PCI bus motion controllers for single and multi-axis applications. The Econo Series is designed for the most cost-sensitive applications.

To minimize cost, the following features are not available on the DMC-18x2: five through eight axes of control, optical isolation on inputs, uncommitted analog inputs, dual encoder inputs, and the auxiliary FIFO and DPRAM communication channel.

The DMC-18x2 incorporates a 32-bit microcomputer and provides advanced features such as PID compensation with velocity and acceleration feedfor-

DMC-1842 4-axis PCI controller

ward, memory with multitasking for simultaneously running up to eight programs, and uncommitted I/O for synchronizing motion with external events. Modes of motion include point-to-point positioning, jogging, linear and circular interpolation, contouring, electronic gearing, and ECAM.

Like all Galil controllers, the DMC-18x2 controllers use a simple, intuitive command language which makes them very easy to program. Gaililools software further simplifies system set-up with "one-button" servo tuning and real-time display of position and velocity information.

Features

- PCI card in 1-through 4-axis versions: DMC-18×2 where $x=1,2,3,4$ axes
\square User-configurable for stepper or servo motors on any combination of axes. Optional sinusoidal commutation for brushless servo motors. Optional firmware for piezoceramic motors.

Accepts up to 12 MHz encoder frequencies for servos. Outputs up to 3 MHz for steppers

- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
\square Modes of motion include jogging, point-to-point positioning, contouring, linear and circular interpolation, electronic gearing and ECAM. Features ellipse saling, slow-down a round corners, infinite segment feed, and feedrate override

Over 200 English-like commands including conditional statements and event triggers
\square Non-volatile memory for programs, variables, and arrays. Multitasking for concurrent execution of up to eight programs

- Home input and forward and reverse limits accepted for every axis

8 uncommitted inputs and 8 outputs

- High speed position latch for each axis and output compareExpansion for $641 / 0$ with optional DB-14064 board100-pin SCSI connector. ICM-2900 breaks-out 100-pin cable into screw terminalsAMP-19540 connects to PCI controller with 100-pin cable and provides four amplifiers for 500 W servosCommunication drivers for Windows, QNX, and Linux
CEcertified
Custom hardware and firmware options available

PCI Bus Econo Series, 1-4 axes

DMC-18x2 Series

Specifications

System Processor

Motorola 32-bit microcomputer
Communications Interface
\square DMC-18x2: PCI with bi-directional FIF0

- 32-bit PCl interface. 64 -bit compatible. $5 \mathrm{~V} / 3.3 \mathrm{~V}$

Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:

- Point-to-point positioning

Position Tracking
\square Jogging
$2 D$ Linear and Circular Interpolation with feedrate override
Linear Interpolation for up to 4 axes
\square Tangential Following

- Helical

Electronic Gearing with multiple masters and ramp-to-gearing

- Gantry Mode

Electronic Cam
Contouring
Teach and playback

Memory

- Program memory size - 1000 lines $\times 80$ characters

254 variables
8000 array elements in up to 30 arrays

Filter

- PID (proportional-integral-derivative) with velocity and acceleration feedforward
Notch filter and low-pass filter
Velocity smoothing to minimize jerk
Integration limits
Torque limits
Offset adjustments
Option for piezo-ceramic motors

Kinematic Ranges

\square Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)

- Velocity:Up to 12 million counts/sec for servo motors

Acceleration:Up to 67 million counts/sec ${ }^{2}$

Uncommitted Digital I/O
 digital inputs digital outputs analog inputs
 $\begin{array}{llll}\text { DMC-18×2 } & 8 & 8 & 0\end{array}$

High Speed Position Latch

Uncommitted inputs 1-4 latch X, Y, Z, W (latches within 0.1 microseconds)

Dedicated Inputs (per axis)

\square Main encoder inputs-Channel A, A-B,B-B,I,I-($\pm 12 \mathrm{~V}$ or TTL)
\square Forward and reverse limit inputs
Home input
Selectable high-speed position latch input
Selectable abort input for each axis
Dedicated Outputs (per axis)
Analog motor command output with 16-bit DAC resolution

- Pulse and direction output for step motors

PWM output also available for servo amplifiers
Amplifier enable output
Error output (per card)
High-speed position compare output (per card)

Minimum Servo Loop Update Time

-FAST ${ }^{T}$
$1-2$ axes: $250 \mu \mathrm{sec} \quad 125 \mu \mathrm{sec}$
3-4 axes: $375 \mu \mathrm{sec} \quad 250 \mu \mathrm{sec}$

Maximum Encoder Feedback Rate

12 MHz

Maximum Stepper Rate

3 MHz (Full, half or microstep)

Power Requirements

- DMC-18x2:
$+5 \mathrm{~V} 750 \mathrm{~mA}$
$-12 \mathrm{~V} 20 \mathrm{~mA}$
$+12 \mathrm{~V} 20 \mathrm{~mA}$
$+3.3 V 100 \mathrm{~mA} *$

Environmental

Operating temperature: $0-70^{\circ} \mathrm{C}$
Humidity: 20-95\% RH, non-condensing

Mechanical

DMC-18x2:7.275" $\times 4.2^{\prime \prime}$

Connectors

- 100-pin HD SSSI

[^0]
DMC-18x2 Series

Instruction Set

Servo Motor	
FA	Acceleration feedforward
FV	Velocity feedforward
IL	Integrator limit
IT	Independent time constant
KD	Derivative constant
KI	Integrator constant
KP	Proportional constant
NB	Notch bandwidth
NF	Notch frequency
NZ	Notch zero
OF	Offset
PL	Pole
SH	Servo here
TL	Torque limit
TM	Sample time
Stepper Motor	
DE	Define encoder position
DP	Define reference position
KS	Stepper motor smoothing
MT	Motor type
QS	Error magnitude
RP	Report commanded position
TD	Step counts output
TP	Tell position of encoder
YA	Step drive resolution
YB	Step motor resolution
YC	Encoder resolution
YR	Error correction
YS	Stepper position maintenance
Brushless Motor	
BA	Brushless axis
BB	Brushless phase
BC	Brushless calibration
BD	Brushless degrees
BI	Brushless inputs
BM	Brushless modulo
BO	Brushless offset
BS	Brushless setup
BZ	Brushless zero
I/O	
AL	Arm latch
CB	Clear bit
CO	Configure 1/0 points
11	Input interrupt
OB	Define output bit
$0 C$	Output compare function
OP	Output port
SB	Set bit
@ ${ }^{1}[\mathrm{x}]$	State of digital input x
@OUT[x]] State of digital outputx

Independent Motion

AB Abort motion
AC Acceleration
BG Begin motion
DC Deceleration
FE Find edge
FI Find index
HM Home
IP Increment position
IT Smoothing time constant
JG Jog mode
PA Position absolute
PR Position relative
PT Position tracking
SP Speed
ST Stop
Contour Mode
CD Contour data
CM Contour mode
DT Contour time interval
WC Wait for contour data

ECAM/Gearing

EA ECAM master
EB Enable ECAM
EC ECAM table index
EG ECAM go
EM ECAM cycle
EP ECAM interval
EQ Disengage ECAM
ET ECAM table entry
EW ECAM widen
GA Master axis for gearing
GD Engagement distance for gearing
GM Gantry mode
GP Correction for gearing
GR Gear ratio for gearing

Vector/Linear Interpolation

CA Define vector plane
CR Circular interpolation move
CS Clear motion sequence
ES Ellipse scaling
LE Linear interpolation end
LI Linear interpolation segment
LM Linear interpolation mode
ST Stop motion
TN Tangent
VA Vector acceleration
VD Vector deceleration
VE Vector sequence end
VM Coordinated motion mode
VP Vector position
VR Vector speed ratio
VS Vector speed
VT Smoothing time constant—vector

DMC-18x2 Series

Connectors

100-pin, high density; Connector: Amp\# 2-178238-9,
Cable: Amp\# 2-175677-9; Enclosure: Amp\# 176793-9
Axis 1-4 DMC-18x2

1 Ground	51 NC
2 Ground	52 Ground
35 V	53 5V
4 Error output*	54 Limit common
5 Reset*	55 Home W
6 Encoder-compare output	56 Reverse limit W
7 Ground	57 Forward limit W
8 Ground	58 Home Z
9 Motor command W	59 Reverse limit Z
10 Sign W / dir W	60 Forward limit Z
11 PWM W / step W	61 Home Y
12 Motor command Z	62 Reverse limit Y
13 Sign Z / dir Z	63 Forward limit Y
14 PWM Z / step Z	64 Home X
15 Motor command Y	65 Reverse limit X
16 Sign Y / dir Y	66 Forward limit X
17 PWM Y / step Y	67 Ground
18 Motor command X	68 5V
19 Sign X / dir X	69 Input common
20 PWM X / step X	70 Latch X/Input 1
21 Amp enable W	71 Latch Y/Input 2
22 Amp enable Z	72 Latch Z/Input 3
23 Amp enable Y	73 Latch W/Input 4
24 Amp enable X	74 Input 5
$25 \mathrm{~A}+\mathrm{X}$	75 Input 6
$26 \mathrm{~A}-\mathrm{X}$	76 Input 7
$27 \mathrm{~B}+\mathrm{X}$	77 Input 8
$28 \mathrm{~B}-\mathrm{X}$	78 Abort*
$291+X$	79 Output 1
$301-X$	80 Output 2
$31 \mathrm{~A}+\mathrm{Y}$	81 Output 3
$32 \mathrm{~A}-\mathrm{Y}$	82 Output 4
$33 \mathrm{~B}+\mathrm{Y}$	83 Output 5
$34 \mathrm{~B}-\mathrm{Y}$	84 Output 6
$35 \mathrm{I}+\mathrm{Y}$	85 Output 7
$36 \mathrm{I}-\mathrm{Y}$	86 Output 8
$37 \mathrm{~A}+\mathrm{Z}$	875 V
$38 \mathrm{~A}-\mathrm{Z}$	88 Ground
$39 \mathrm{~B}+\mathrm{Z}$	89 Ground
$40 \mathrm{~B}-\mathrm{Z}$	90 Ground
$41 \mathrm{I}+\mathrm{Z}$	91 NC
$42 \mathrm{I}-\mathrm{Z}$	92 NC
$43 \mathrm{~A}+\mathrm{W}$	93 NC
$44 \mathrm{~A}-\mathrm{W}$	94 NC
$45 \mathrm{~B}+\mathrm{W}$	95 NC
$46 \mathrm{~B}-\mathrm{W}$	96 NC
$47 \mathrm{I}+\mathrm{W}$	97 NC
$48 \mathrm{I}-\mathrm{W}$	98 NC
$49+12 \mathrm{~V}$	99-12V
$50+12 \mathrm{~V}$	$100-12 \mathrm{~V}$

*Active low

Connectors-AMP-19540
Interconnect with four 500 W servo drives

J1 Power 8-pin AMP Mate-n-lock II	
1 Earth	5 Ground
$2+\mathrm{VM}(18 \mathrm{~V}-80 \mathrm{~V})$	6 Ground
$3+\mathrm{VM}(18 \mathrm{~V}-80 \mathrm{~V})$	7 Ground
$4+\mathrm{VM}(18 \mathrm{~V}-80 \mathrm{~V})$	8 Ground

JX1, JY1, JZ1, JW1 Motor Output 4-pin
AMP Mate-n-lock II
1 Earth
2 A
3 C
4 B

J3 I/O 44-pin Hi-density Female D-sub
1 PWM/MCMDZ 23 Latch W/Input 4

2 Output $6 \quad 24$ Latch X/Input 1
3 Output $8 \quad 25$ PWM/MCMD X
4 Output $5 \quad 26$ Home X
5 Output $2 \quad 27$ Home Y
6 Abort* 28 Home Z
7 Input $6 \quad 29$ Home W
8 Latch Z/Input 30 Error Output*/INCOM
9 SIGN/AENY 31 PWM/MCMDW
10 Encoder compare output 325 V
11 Reverse limit X 335 V
12 Reverse limit Y 34 Ground
13 Reverse limit Z 35 Ground
14 Reverse limit W $\quad 36$ Input 8
15 Forward limit W $\quad 37$ Input 5
16 SIGN/AEN W 38 Latch Y/Input 2
17 SIGN/AENZ 39 PWM/MCMDY
18 Output $7 \quad 40$ SIGN/AEN X
19 Output $4 \quad 41$ Forward limit X
20 Output $1 \quad 42$ Forward limit Y
21 Output $3 \quad 43$ Forward limit Z
22 Input 744 Reset*/LSCOM
J5 Y-axis 15-pin Hi-density Female D-sub

$1 \mathrm{I}+\mathrm{Y}$	$9 \mathrm{AA}-\mathrm{Y}$
$2 \mathrm{~B}+\mathrm{Y}$	$10 \mathrm{Hall} \mathrm{A} Y$
$3 \mathrm{~A}+\mathrm{Y}$	$11 \mathrm{AA}+\mathrm{Y}$
$4 \mathrm{AB}+\mathrm{Y}$	$12 \mathrm{AB}-\mathrm{Y}$
5 Ground	13 Hall BY
$6 \mathrm{I}-\mathrm{Y}$	14 Halll CY
$7 \mathrm{~B}-\mathrm{Y}$	155 V
$8 \mathrm{~A}-\mathrm{Y}$	

J6 Z-axis 15-pin Hi-density Female D-sub

$1 \mathrm{I}+Z$	$9 \mathrm{AA}-Z$
$2 \mathrm{~B}+Z$	10 Hall AZ
$3 \mathrm{~A}+Z$	$11 \mathrm{AA}+Z$
$4 \mathrm{AB}+Z$	$12 \mathrm{AB}-\mathrm{Z}$
5 Ground	13 Hall BZ
$6 \mathrm{I}-\mathrm{Z}$	14 HallCZ
$7 \mathrm{~B}-Z$	155 V
$8 \mathrm{~A}-Z$	

J7 W-axis 15-pin Hi-density Female D-sub

$1 \mathrm{I}+\mathrm{W}$	$9 \mathrm{AA}-\mathrm{W}$
$2 \mathrm{~B}+\mathrm{W}$	10 Hall AW
$3 \mathrm{~A}+\mathrm{W}$	$11 \mathrm{AA}+\mathrm{W}$
$4 \mathrm{AB}+\mathrm{W}$	$12 \mathrm{AB}-\mathrm{W}$
5 Ground	13 Hall BW
$6 \mathrm{I}-\mathrm{W}$	14 HallCW
$7 \mathrm{~B}-\mathrm{W}$	155 V
$8 \mathrm{~A}-\mathrm{W}$	

J4 X-axis 15-pin Hi-density Female D-sub

$11+X$	9 AA -X
$2 B+X$	10 Hall AX
$3 \mathrm{~A}+\mathrm{X}$	11 AA $+X$
$4 \mathrm{AB}+\mathrm{X}$	12 AB - X
5 Ground	13 Hall B X
$6 \mathrm{I}-\mathrm{X}$	14 Hall CX
$7 \mathrm{~B}-\mathrm{X}$	155 V
8 A-X	

AMP-19540

DMC-18x2 Series

Hardware Accessories

ICM-2900 Interconnect Module
The ICM-2900 breaks-out the 100-pin SCSI cable into screw-type terminals. The ICM-2900-FL has flanges which allow standard screw-type mounting. Specify -OPTO for optoisolated outputs. Specify -HAEN for high amp enable and -LAEN for low amp enable..

ICM-2900 Interconnect Module with flange

AMP-19540 Interconnect with Four 500 Watt Servo Drives

 Gali's AMP-19540 is a 4-axis amplifier for driving brush or brushless motors up to 500 Watts each. By interfacing directly to Galil's DMC-18×2 PCI bus controllers, it provides a cost-effective controller/drive solution for multi-axis applications. The AMP-19540 contains four transconductance, PWM amplifiers for driving brush or brushless motors. Each amplifier operates at 18 V to 80 V DC , up to 7 Amps continuous, 10 Amps peak. The AMP-19540 gain setting is easily configured with jumpers. The PWM switching frequency is 60 kHz . The AMP-19540 enclosure has dimensions of $6.8^{\prime \prime} \times 8.75^{\prime \prime} \times 1$ ". It interfaces to a PCI bus controller with a single, 100 -pin high density SCSI cable. Signals for each axis are brought out through D-type connectors located on the AMP-19540. For applications with less than three axes, the AMP-19520 two-axis model is available. A shunt regulator option is also available. CE certified.
DB-14064 I/O Expansion

The DB-14064 is an optional board which provides 64 additional I/0 for the DMC-18x2 controllers. This board mounts directly onto the back of the controller and provides $641 / 0$ points configurable by the user for inputs or outputs. The $1 / 0$ is accessible through two 50 -pin headers.

[^0]: * DMC-18x2 revision E and higher require 3.3V from PCI bus. Order DMC-18x2-3VREG to have a regulator installed to allow 5V only supply.
 $t_{\text {Reduced feature set for -FAST. }}$

